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LElTER TO THE EDITOR 

On the x2 +Ax2/(l +gx2) interaction 

V S Varma 
Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India 

Received 28 September 1981 

Abstract. We present an infinite set of exact solutions of odd parity for the one-dimensional 
Schrodinger equation with the interaction x z  + Ax2/(1 + gx’). These complement the exact 
solutions of even parity that have been obtained recently by Flessas. 

The existence of an infinite number of exact solutions of the Schrodinger equation 

(d2/dX2+E-X2-AX2/(1 +gx2)]$(x)=0, -m<x <+a, g>o, (1) 

with eigenfunctions given by products of exponential and polynomial functions of x2 for 
specific relations between the couplings g and A, has recently been reported by Flessas 
(1981)-hereafter referred to as I. We give below a systematic procedure for deter- 
mining such solutions which yields not only the solutions of even parity reported in I, 
but also a similar set of odd parity solutions. 

We begin by writing 

Substitution into equation (1) yields an indicia1 equation with solutions v = 0 or 1 and a 
three-term recursion relation for the coefficients a, given by 

a ;+2an+2 + P;+lan+l+ K U ”  = 0 

a ;  = -(2n + v)(2n + v - l ) ,  

p ;  = 2(2n + v )  + 1 - E  + ga;, 

with 

7 ;  = [2(2n + v )  + 1 - E]g + A .  

(3) 

Solutions of the kind obtained in I exist if the infinite series in equation (2) can be made 
to terminate. For a, to be the last non-vanishing coefficient in the series for the 
wavefunction, it is necessary that the next two successive coefficients amcl and 
vanish. Since a, # 0 and a,+l= 0, for am+2 = 0 it is necessary that 7; = 0. It is easily 
seen that the condition a,+l=O is equivalent to the vanishing of the ( m + l ) t h  
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determinant given by 

Thus the conditions necessary for the existence of exact solutions of the kind reported in 
I are 

Y ; = O ,  (8) 

A k + 1 =  0,  (9 )  

where m = 0, 1 , 2 , .  . . . 

Even parity solutions 

(Y = 0) are of the form 
It follows from equation (8) that the energy eigenvalues for the even parity solutions 

E = ( 4 m + l ) + A / g ,  m = 0 , 1 , 2  , . . . ,  (10) 

provided that the condition imposed by equation (9) is also satisfied. We now examine 
the precise relations that E and g must satisfy for different values of m, in order that 
exact solutions exist. 

(i) For m = 0 

E = 1 +A/g .  (11) 

In addition we must have 
A : = ~ ~ = ~ - E = o .  0 

Together these imply A = 0 and we obtain just the ground state energy of the harmonic 
oscillator. 

(ii) For m = 1, 

E =5+A/g,  

A:=Pg/37 -ayyg = O .  

Together these give 

(5 -E)(1 -E -2g) =O, 

whose solution is either E = 5 and A = 0 which yields just the second excited state of the 
harmonic oscillator, or 

E = 1 - 2g, 

A = -2(2 + g). 

(16) 

(17) 

Equations (13), (16) and (17) together constitute the first exact solution reported in I. 
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(iii) For m = 2, the two conditions 

E =9+A/g, (18) 

(19) A:= P:(P?P: -a&?) -Pzaiyo = 0, 0 0 0  

together lead to either the fourth excited state of the harmonic oscillator for A = 0, or 
the second exact solution reported in I for 

A = -7g2-6g*g(25g2-12g+4)”2. (20) 

Exact even parity solutions for higher m can be obtained in a similar manner by 
using equation (10) in conjunction with = 0 and solving the resulting mth order 
polynomial in E and g (one solution always being E = 4m + 1 corresponding to A = 0). 

Odd parity solutions 
The energy eigenvalues of the odd parity states (v = 1) are of the form 

E = ( 4 m + 3 ) + A / g ,  m = 0 , 1 , 2 , .  . . . (21) 

The procedure described above leads, in addition to the harmonic oscillator solutions 
corresponding to A = 0, to the following exact solutions. 

(i) For m = 1, 

E =7+A/g,  (22) 

A = -2g(2 + 3g), (23) 

4 (x )  = ax(1 +gx2) exp(-x2/2) 

with 

(24) 

where U is an overall normalisation constant. 
(ii) For m = 2, 

E = l l + A / g ,  

A = -13g2-6gig(49g2-4g+4)”2, 

where a. is an overall normalisation constant, and 

This procedure can be continued to obtain an infinite set of odd parity wavefunc- 
tions and their corresponding eigenvalues provided A and g satisfy appropriate 
algebraic conditions. 

The results of the present paper taken in conjunction with those reported in I show 
that for the interaction under consideration there exist an infinite set of exact solutions 
with eigenvalues of the form 

E = ( 2 m + l ) + A / g ,  m = 0 , 1 , 2  , . . . ,  (30) 

and corresponding wavefunctions given by products of exp(-x2/2) and polynomials 
P,(x), the polynomials having parity (-l)m, 
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We conclude by remarking that the procedure outlined in this paper can be easily 
extended to search for exact solutions of such quantum bound state problems as have k 
adjustable coupling constants in their Hamiltonians, and which on the substitution of a 
suitable ansatz for the wavefunction in their corresponding Schrodinger equations lead 
to recursion relations that involve coefficients whose indices are not separated by more 
than (k + 1) units. 

Reference 

Flessas G P 1981 Phys. Lett. 84A 121 


