On the $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$ interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14 L489
(http://iopscience.iop.org/0305-4470/14/12/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:40

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$ interaction

V S Varma
Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India

Received 28 September 1981

Abstract

We present an infinite set of exact solutions of odd parity for the one-dimensional Schrödinger equation with the interaction $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$. These complement the exact solutions of even parity that have been obtained recently by Flessas.

The existence of an infinite number of exact solutions of the Schrödinger equation
$\left(\mathrm{d}^{2} / \mathrm{d} x^{2}+E-x^{2}-\lambda x^{2} /\left(1+g x^{2}\right)\right] \psi(x)=0, \quad-\infty<x<+\infty, \quad g>0$,
with eigenfunctions given by products of exponential and polynomial functions of x^{2} for specific relations between the couplings g and λ, has recently been reported by Flessas (1981)-hereafter referred to as I. We give below a systematic procedure for determining such solutions which yields not only the solutions of even parity reported in I, but also a similar set of odd parity solutions.

We begin by writing

$$
\begin{equation*}
\psi(x)=\exp \left(-x^{2} / 2\right) \sum_{n=0}^{\infty} a_{n} x^{2 n+\nu} . \tag{2}
\end{equation*}
$$

Substitution into equation (1) yields an indicial equation with solutions $\nu=0$ or 1 and a three-term recursion relation for the coefficients a_{n} given by

$$
\begin{equation*}
\alpha_{n+2}^{\nu} a_{n+2}+\beta_{n+1}^{\nu} a_{n+1}+\gamma_{n}^{\nu} a_{n}=0 \tag{3}
\end{equation*}
$$

with

$$
\begin{align*}
& \alpha_{n}^{\nu}=-(2 n+\nu)(2 n+\nu-1), \tag{4}\\
& \beta_{n}^{\nu}=2(2 n+\nu)+1-E+g \alpha_{n}^{\nu}, \tag{5}\\
& \gamma_{n}^{\nu}=[2(2 n+\nu)+1-E] g+\lambda . \tag{6}
\end{align*}
$$

Solutions of the kind obtained in I exist if the infinite series in equation (2) can be made to terminate. For a_{m} to be the last non-vanishing coefficient in the series for the wavefunction, it is necessary that the next two successive coefficients a_{m+1} and a_{m+2} vanish. Since $a_{m} \neq 0$ and $a_{m+1}=0$, for $a_{m+2}=0$ it is necessary that $\gamma_{m}^{\nu}=0$. It is easily seen that the condition $a_{m+1}=0$ is equivalent to the vanishing of the ($m+1$)th
determinant given by

$$
\Delta_{m+1}^{\nu}(g, \lambda, E)=\left|\begin{array}{ccccc}
\beta_{0}^{\nu} & \alpha_{1}^{\nu} & & & 0 \tag{7}\\
\gamma_{0}^{\nu} & \beta_{1}^{\nu} & \alpha_{2}^{\nu} & & 0 \\
& \gamma_{1}^{\nu} & \beta_{2}^{\nu} & \alpha_{3}^{\nu} & \\
& & \ddots & & \\
& 0 & & \gamma_{m-2}^{\nu}, \beta_{m-1}^{\nu} & \alpha_{m}^{\nu} \\
& & & & \gamma_{m-1}^{\nu}
\end{array} \boldsymbol{\beta}_{m}^{\nu}\right|
$$

Thus the conditions necessary for the existence of exact solutions of the kind reported in I are

$$
\begin{align*}
& \gamma_{m}^{\nu}=0, \tag{8}\\
& \Delta_{m+1}^{\nu}=0, \tag{9}
\end{align*}
$$

where $m=0,1,2, \ldots$.

Even parity solutions

It follows from equation (8) that the energy eigenvalues for the even parity solutions ($\nu=0$) are of the form

$$
\begin{equation*}
E=(4 m+1)+\lambda / g, \quad m=0,1,2, \ldots, \tag{10}
\end{equation*}
$$

provided that the condition imposed by equation (9) is also satisfied. We now examine the precise relations that E and g must satisfy for different values of m, in order that exact solutions exist.
(i) For $m=0$

$$
\begin{equation*}
E=1+\lambda / g . \tag{11}
\end{equation*}
$$

In addition we must have

$$
\begin{equation*}
\Delta_{1}^{0}=\beta_{0}^{0}=1-E=0 . \tag{12}
\end{equation*}
$$

Together these imply $\lambda=0$ and we obtain just the ground state energy of the harmonic oscillator.
(ii) For $m=1$,

$$
\begin{align*}
& E=5+\lambda / g \tag{13}\\
& \Delta_{2}^{0}=\beta_{0}^{0} \beta_{1}^{0}-\alpha_{1}^{0} \gamma_{0}^{0}=0 . \tag{14}
\end{align*}
$$

Together these give

$$
\begin{equation*}
(5-E)(1-E-2 g)=0 \tag{15}
\end{equation*}
$$

whose solution is either $E=5$ and $\lambda=0$ which yields just the second excited state of the harmonic oscillator, or

$$
\begin{align*}
& E=1-2 g \tag{16}\\
& \lambda=-2(2+g) \tag{17}
\end{align*}
$$

Equations (13), (16) and (17) together constitute the first exact solution reported in I.
(iii) For $m=2$, the two conditions

$$
\begin{align*}
& E=9+\lambda / g, \tag{18}\\
& \Delta_{3}^{0}=\beta_{0}^{0}\left(\beta_{1}^{0} \beta_{2}^{0}-\alpha_{2}^{0} \gamma_{1}^{0}\right)-\beta_{2}^{0} \alpha_{1}^{0} \gamma_{0}^{0}=0, \tag{19}
\end{align*}
$$

together lead to either the fourth excited state of the harmonic oscillator for $\lambda=0$, or the second exact solution reported in I for

$$
\begin{equation*}
\lambda=-7 g^{2}-6 g \pm g\left(25 g^{2}-12 g+4\right)^{1 / 2} \tag{20}
\end{equation*}
$$

Exact even parity solutions for higher m can be obtained in a similar manner by using equation (10) in conjunction with $\Delta_{m+1}^{0}=0$ and solving the resulting m th order polynomial in E and g (one solution always being $E=4 m+1$ corresponding to $\lambda=0$).

Odd parity solutions

The energy eigenvalues of the odd parity states $(\nu=1)$ are of the form

$$
\begin{equation*}
E=(4 m+3)+\lambda / g, \quad m=0,1,2, \ldots \tag{21}
\end{equation*}
$$

The procedure described above leads, in addition to the harmonic oscillator solutions corresponding to $\lambda=0$, to the following exact solutions.
(i) For $m=1$,

$$
\begin{align*}
& E=7+\lambda / g \tag{22}\\
& \lambda=-2 g(2+3 g) \tag{23}
\end{align*}
$$

with

$$
\begin{equation*}
\psi(x)=a x\left(1+g x^{2}\right) \exp \left(-x^{2} / 2\right) \tag{24}
\end{equation*}
$$

where a is an overall normalisation constant.
(ii) For $m=2$,

$$
\begin{align*}
& E=11+\lambda / g \tag{25}\\
& \lambda=-13 g^{2}-6 g \pm g\left(49 g^{2}-4 g+4\right)^{1 / 2} \tag{26}\\
& \psi(x)=a_{0} x\left(1+a_{1} x^{2}+a_{2} x^{4}\right) \exp \left(-x^{2} / 2\right) \tag{27}
\end{align*}
$$

where a_{0} is an overall normalisation constant, and

$$
\begin{align*}
& a_{1}=-(8 g+\lambda) /(6 g), \tag{28}\\
& a_{2}=2 g(8 g+\lambda) /\left[3\left(20 g^{2}+\lambda\right)\right] \tag{29}
\end{align*}
$$

This procedure can be continued to obtain an infinite set of odd parity wavefunctions and their corresponding eigenvalues provided λ and g satisfy appropriate algebraic conditions.

The results of the present paper taken in conjunction with those reported in I show that for the interaction under consideration there exist an infinite set of exact solutions with eigenvalues of the form

$$
\begin{equation*}
E=(2 m+1)+\lambda / g, \quad m=0,1,2, \ldots, \tag{30}
\end{equation*}
$$

and corresponding wavefunctions given by products of $\exp \left(-x^{2} / 2\right)$ and polynomials $P_{m}(x)$, the polynomials having parity $(-1)^{m}$.

We conclude by remarking that the procedure outlined in this paper can be easily extended to search for exact solutions of such quantum bound state problems as have k adjustable coupling constants in their Hamiltonians, and which on the substitution of a suitable ansatz for the wavefunction in their corresponding Schrödinger equations lead to recursion relations that involve coefficients whose indices are not separated by more than ($k+1$) units.

Reference

